Skew Gaussian processes for classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Spatial Skew-Gaussian Processes and Applications

In many applications, observed spatial variables have skewed distributions. It is often of interest to model the shape of the skewed marginal distribution as well as the spatial correlations. We propose a class of stationary processes that have skewed marginal distributions. The covariance function of the process can be given explicitly. We study maximum likelihood inference through a Monte Car...

متن کامل

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

Variational Mixtures of Gaussian Processes for Classification

Gaussian Processes (GPs) are powerful tools for machine learning which have been applied to both classification and regression. The mixture models of GPs were later proposed to further improve GPs for data modeling. However, these models are formulated for regression problems. In this work, we propose a new Mixture of Gaussian Processes for Classification (MGPC). Instead of the Gaussian likelih...

متن کامل

Gaussian Processes for Classification: Mean-Field Algorithms

We derive a mean-field algorithm for binary classification with gaussian processes that is based on the TAP approach originally proposed in statistical physics of disordered systems. The theory also yields an approximate leave-one-out estimator for the generalization error, which is computed with no extra computational cost. We show that from the TAP approach, it is possible to derive both a si...

متن کامل

Bayesian Classification With Gaussian Processes

We consider the problem of assigning an input vector to one of m classes by predicting P(c|x) for c = 1, o, m. For a twoclass problem, the probability of class one given x is estimated by s(y(x)), where s(y) = 1/(1 + ey ). A Gaussian process prior is placed on y(x), and is combined with the training data to obtain predictions for new x points. We provide a Bayesian treatment, integrating over u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2020

ISSN: 0885-6125,1573-0565

DOI: 10.1007/s10994-020-05906-3